The natural flow and the critical exponent

发布者:周林峰发布时间:2024-12-01浏览次数:27

报告时间:12月6日周五下午1: 30-2:30

报告地点:数学楼401报告厅

报告人:汪湜 研究员 上海科技大学


报告人简介:汪湜,上海科技大学数学科学研究所助理教授,研究员,博士生导师。本科就读于浙江大学,16年获俄亥俄州立大学博士。研究兴趣包括:微分几何,几何拓扑,几何群论与动力系统。相关论文发表于J. Eur. Math. Soc., Math. Ann., Geom. Topol.,Forum Math. Sigma., Comment. Math. Helv., Math. Z.等著名期刊。


报告摘要:For a complete Riemannian manifold of nonpositive curvature,we introduce a flow. We give an upper bound on the k-Jacobian of the flow in terms of the critical exponent of the fundamental group. We also give several

applications connecting the geometry and topology of the manifold, which includes the linear

isoperimetric inequality, the homological vanishing theorem and the non-existence of compact complex

subvarieties in certain complex hyperbolicmanifolds. This is joint work with Chris Connell and Ben McReynolds.