Five dimensional gradient shrinking Ricci soliton with constant scalar curvature

发布者:曹思圆发布时间:2024-12-28浏览次数:10

报告时间:1月2日周四下午2: 00-3:00

报告地点:数学楼401报告厅

报告人: 李凤江

主持人:郑宇

报告人简介:

李凤江,博士毕业于华东师范大学数学系,现于重庆理工大学数学科学研究所任副教授。主要研究内容包括Einstein 度量及Hamilton Ricci 流的Ricci soliton分类等相关几何分析问题。


报告摘要:

In this talk, we will talk about the rigidity of five dimensional  gradient shrinking Ricci soliton with constant scalar curvature. We prove that if 5-dimensional complete shrinking gradient Ricci soliton $(M, g, f)$ has constant scalar curvature $\frac{3}{2}$, it will be a finite quotient of $\mathbb{R}^2\times \mathbb{S}^3$.This work is joint with Prof. Guoqiang Wu , Jianyu Ou and Yuanyuan Qu.