The Yang-Mills flow in vector bundles over higher dimensional Riemannian manifolds

发布者:曹思圆发布时间:2025-03-01浏览次数:23

报告时间:3月6日周四下午14:00-15:00

报告地点:数学楼102报告厅

报告人: 洪敏纯

主持人:郑宇


报告人简介:洪敏纯,澳大利亚昆士兰大学数学系教授,国际著名几何分析及偏微分方程专家。洪敏纯教授八十年代博士毕业于浙江大学,曾获第一届霍英东青年科学家奖,教育部自然科学一等奖。他在微分几何与非线性分析方面,特别在调和映射、Yang-Mills场、液晶模型偏微分方程等领域做出了杰出贡献,在国际上享有盛誉。在Adv. Math., Math.Ann., J. Funct. Anal.等国际顶尖学术期刊发表论文几十多篇。


报告摘要: In this paper, we establish a parabolic version of  the gauge fixing theorem on the Yang-Mills flow and apply it to prove the maximal existence of  weak solutions of    the Yang-Mills flow in vector bundles over a compact $n$-dimensional manifold with initial value $A_0$ having the curvature $F_{A_0}\in L^{n/2}(M)$ for $n\geq 4$. In particular, we give  new proofs on uniform    estimates of $\nabla_A^l F_A$ by improving Moser's iterations \cite{Mo1}  and  an idea of Hamilton \cite{Ha}  on the Ricci flow. Furthermore,  we  investigate the blow-up of the Yang-Mills flow at the  maximal existence  time $T_1$. Finally, we improve an asymptotical result   on the Yang-Mills flow in  \cite{HT1}.


(This is a joint work with  Jared  Casey and Chak Hoi Chan).