Affine dual Minkowski problems

发布者:曹思圆发布时间:2025-04-14浏览次数:10

报告时间:4月17日周四下午14:00-15:00

报告地点:数学楼102报告厅

报告人: 吴尉迟

主持人:周林峰


报告人简介:吴尉迟,华东师范大学数学科学学院副教授,主要研究方向为几何分析中的凸体理论与数学竞赛问题研究。已在Adv. Math.,Trans. Amer. Math. Soc.,Calc. Var. Partial Differential Equations等期刊上发表SCI论文数篇, 在数学教育学报、Front. Psychol.等期刊发表教育类论文数篇 。先后获得中国博士后科学基金特别资助(站前),上海市超级博士后资助,国家自然科学基金青年项目。


报告摘要: While affine functionals of convex bodies and their affine isoperimetric inequalities have been extensively studied, the construction of geometric measures arising from affine geometric invariants (other than volume) has been missing. In this talk, affine “invariant” measures derived from the dual affine quermassintegrals will be presented. Minkowski problems for the new affine-invariant measures will be proposed and studied. The new variation formula derived here leads to new affine operators that map star bodies to star bodies. An affine isoperimetric inequality is obtained for new bi-dual intersection bodies. This work is joint with Cai, Leng and Xi.